

Developing Shellfish Water in the Coan And Little Wicomico Rivers

Northumberland County Library, VA

23May 2003

What is a TMDL?

TMDL = Total Maximum Daily Load =
maximum amount of a pollutant that can
enter a waterbody without violating water
quality standards (WQS)

WQS = numeric or narrative limits on pollutants that ensure the protection of human health and of aquatic life

Where do we need TMDLs?

- TMDLs need to be developed for water bodies that do not meet water quality standards (impaired waters).
- Impaired waters occur throughout Virginia in lakes, streams and tidal waters.
- In Virginia, TMDLs for 644 impaired waters need to be developed by 2010. Of these, 230+ are shellfish water closures

Why TMDLs for the Coan and Little Wicomico R.?

- VDH Division of Shellfish Sanitation (DSS)
 monitors fecal coliform levels in shellfish waters
- Applicable water quality standard: 30-month geometric mean not exceeding 14 MPN/100 mL, and a 90th percentile not exceeding 49 MPN/100 mL
- Observed exceedances necessitate TMDLs

Components of TMDL Study

Identify Problem

Source Assessment

- Identify sources
- Estimate source loading

Link Targets and Sources

- Assess linkages
- Estimate total loading capacity

Load Allocations

• Divide loads among sources

Follow-up Monitoring

Required Elements of a TMDL

- Be developed to meet water quality standards;
- Be developed for critical stream conditions;
- Consider seasonal variations;
- Include wasteload and load allocations;
- Include a margin of safety;
- Consider impacts of background contributions;
- · Be subjected to public participation; and
- Have reasonable assurance for implementation.

Virginia's TMDL Development Process

- Public notice for TMDL development
- TMDL study
- Public notice for Draft TMDL
- Final TMDL report
- EPA approval
- Implementation process
- => Opportunities for public input and participation

Location Map Coan River Watershed

Coan River Land Use

Land Use Category	Area (acres)	Area (%)
Transitional	210	1.4
Forest	7309	48.9
Wetland	581	3.8
Row Crops	2239	15.0
Pasture/Hay	3955	26.4
Commercial/Industrial/Transportation	71	0.5
Residential	143	1.0
Open Water	443	3.0
Total	14951	100

Source: Virginia National Land Cover Data (NLCD) Version 05-27-99

Coan River Watershed Average Soil Permeability (in/hr)

Coan River Sanitary Survey Deficiencies

Coan River Summary Standard Comparison

Station	90 th Percentile Preceeding 30 Months	Water Quality Standard	Station Meets Standard?	Geometric Mean	Geometric Mean Standard	Station Meets Standard	Current Condem- nation
7 – 145A	40.5	49	Yes	9.0	14	Yes	No
15 – 145C	38.4		Yes	8.2		Yes	No
16 – 145B	56.8		Yes	13.1		Yes	No
20 – 145D*	103.9		No	17.4		No	Yes
24 – 145E*	56.8		No	9.7		Yes	Yes
27 – 145F*	84.4		No	13.8		Yes	Yes
33 – 145G*	55.8		No	11.2		Yes	Yes
$37_5z - 145H*$	147.6	100	No	24.8		No	Yes
38 – 145I*	67.9		No	13.9		Yes	Yes

^{*} Red numbers represent TMDL shellfish areas closed to harvesting.

COAN: 90th percentile and geomean for last 30 sampling events

Coan River Pilot Study Stations

Shellfish Condemnation

Station number

- 8-15
- 8-16
- 8-20
- 8-24
- 8-27
- 8-33
- 8-37.5Z
- 8-38
- 8-7

Annual Average BST Data for the Coan River

Calculation Results Geometric Mean

	The second second second		The second secon		
CLOSURE ID	GEO -METRIC	SEGMENT	VOLUME X	VOLUME X	REQUIRED
AND STATION	MEAN	VOLUME	GEO - MEAN	CRITERIA	REDUCTION IN
NUMBER		(CUBIC		(14MPN/100ML)	PERCENT
Newiber				(141/11/1/1001/12)	TERCEIVI
THE REPORT OF		METERS)			
145 – D	17.36	267,565	4.64E+11	3.75E+11	0.2%
STATION 20					
5171101(20					
145 – E	9.72	122,851	6.01E+10	6.02E+10	0%
STATION 24					
STATION 21					
Considerate Basic	describer and the		Bridge de la Carlo de la Carlo		
145 – F	13.76	117,284	1.61E+10	5.75E+10	0%
STATION 27				ENGLISH OF THE	
145 – G	11.24	39,615	4.45E+09	1.94E+10	0%
STATION 33					
STATIONS					
145 – H	24.83	43,076	1.07E+10	2.11E+10	0%
STATION 37 5Z	21.00	10,070	1.0712.10	2.11127.10	70
STATION 37_3Z					
145 – I STATION	13.86	1,112,690	1.54E+11	1.56E+10	0%
38	10.00	1,112,000	1.5 12 11	1.502.10	
30					
		- A CONTRACTOR OF			Strain Control

Calculation Result 90th Percentile Criterion

CLOSURE ID AND STATION NUMBER	90 TH PERCENT. VALUE (MPN/100ML)	SEGMENT VOLUME (CUBIC METERS)	VOLUME X 90 TH PERCENT. VALUE = ACTUAL LOAD	VOLUME X 90 TH CRITERIA (49MPN/100ML) = LOAD ALLOCATION	REQUIRED LOAD REDUCTION IN PERCENT
145 – D STATION 20	103.9	267,565	2.78E+11	1.31E+11	52.84%
145 – E STATION 24	48.9	122,851	6.01E+10	6.02E+10	N/A
145 – F STATION 27	84.4	117,284	9.90E+10	5.75E+10	41.94%
145 – G STATION 33	55.8	39,615	2.21E+10	1.94E+10	12.19%
145 – H STATION 37_5Z	147.6	43,076	6.36E+10	2.11E+10	66.80%
145 – I STATION 38	67.9	1,112,690	7.56E+11	5.45E+11	27.84%

Coan River Calculation

- Shellfish standards
 - Geometric mean = 14 mpn/100 mL
 - 90th percentile = 49 mpn/100 mL
- Maximum 30-month fecal coliform levels (90th percentile)
 - 67.9 mpn/100 mL at station 38
- Total Organisms = concentration x volume (station 38)
- Total Organisms = $(679,000 \text{ mpn/m}^3)(1,112,690 \text{ m}^3)$
- Total Organisms = 7.56E+11
- Allowable organisms at 49 mpn/100 mL = 5.45E+11
- Required reduction = 27.8%

Coan River Station 38 Data

DATE	BACTERIA MPN/100ML	WILDLIFE	HUMAN	LIVESTOCK	PETS	BIRDS
9/25/01	23	4.17	75	8.33	12.5	0
10/22/01	9.1	4.17	66.67	0	8.33	20.83
11/19/01	93	33.33	66.67	0	0	0
12/6/01	23	0	25	0	29.17	45.83
1/17/02	3.6	0	95.83	4.17	0	0
2/19/02	2.9	0	0	0	0	0
3/20/02	43	0	100	0	0	0
4/18/02	240	75	8.33	12.5	0	4.17
5/1/02	43	54.17	25	16.67	0	4.17
6/13/02	3.6	0	100	0	0	0
7/15/02	9.1	4.17	62.5	12.5	0	20.83
8/29/02	23	12.5	62.5	16.67	4.17	4.17
Average		16	57	6	5	8

TMDL Calculation Station 38

Total = 100%	7.56E+11	5.45E+11	28%
Wildlife = 8%	6.05E+10	6.05E+10	0%
Bird = 16%	1.21E+11	1.21E+11	0%
Human = 57%	4.31E+11	2.80E+11	35%
Pets = 5%	3.78E+10	3.78E+10	0%
Livestock = 6%	4.54E+10	4.54E+10	0%
	美国共和国		

Assumptions: 30-month analysis represents typical state for waterbody, TMDL developed for critical condition is protective of WQ under typical hydrologic conditions.

TMDL uses conservative assumptions by applying highest concentration only.

Recommendations: Maximize human reductions.

Bacterial TMDL for the Coan River Stations 20 and 24

AREA 145-D STATION 20	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	2.78E+11	1.31E+11	53%
Bird	20%	5.90E+10	5.90E+10	0%
Wildlife	8%	2.36E+10	2.36E+10	0%
Human	63%	1.86E+11	5.76E+10	69%
Pets	4%	1.18E+10	1.18E+10	0%
Livestock	4%	1.18E+10	1.18E+10	0%

AREA 145-E STATION 24	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	6.01E+10	6.02E+10	0%
Bird	26%	1.56E+10	1.56E+10	0%
Wildlife	6%	3.61E+09	3.61E+09	0%
Human	47%	2.82E+10	2.82E+10	0%
Pets	9%	5.41E+09	5.41E+09	0%
Livestock	4%	2.40E+09	2.40E+09	0%

Bacterial TMDL for the Coan River Stations 27 and 33

AREA 145-F STATION 27	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	9.90E+10	5.75E+10	42%
Bird	21%	2.08E+10	2.08E+10	0%
Wildlife	5%	4.95E+09	4.95E+09	0%
Human	52%	5.15E+10	1.79E+10	65%
Pets	4%	3.96E+09	3.96E+09	0%
Livestock	10%	9.90E+09	9.90E+09	0%

AREA 145-G STATION 33	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	2.21E+09	1.94E+09	12%
Bird	13%	2.87E+08	2.87E+08	0%
Wildlife	8%	1.77E+08	1.77E+08	0%
Human	59%	1.30E+09	1.19E+09	9%
Pets	2%	4.42E+07	4.42E+07	0%
Livestock	11%	2.43E+08	2.43E+08	0%

BST Load Results for Stations 37_5z and 38, Coan River

AREA 145-H STATION 37_5Z	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	6.36E+10	2.11E+10	67%
Bird	19%	1.21E+10	1.21E+10	0%
Wildlife	11%	7.00E+09	7.00E+09	0%
Human	58%	3.69E+10	3.69E+07	100%
Pets	1%	6.36E+08	6.36E+08	0%
Livestock	11%	7.00E+09	1.33E+09	81%

AREA 145-I STATION 38	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	7.56E+11	5.45E+11	28%
Bird	16%	1.21E+11	1.21E+11	0%
Wildlife	8%	6.05E+10	6.05E+10	0%
Human	57%	4.31E+11	2.81E+11	35%
Pets	5%	3.78E+10	3.78E+10	0%
Livestock	6%	4.54E+10	4.54E+10	0%

Little Wicomico River Watershed Results

Location map Little Wicomico River

Little Wicomico River Land use

Land Use Statistics Little Wicomico River Watershed

Land Use Category	Area (acres)	Area (%)
Transitional	10	>1
Forest	805	63
Wetland	96	8
Bare sand/rock/clay	12	1
Row Crops	195	15
Pasture/Hay	77	6
Commercial/Industrial/Transportation	57	4
Residential	14	1
Open Water	15	1
Total	1281	100

Source: Virginia National Land Cover Data (NLCD) Version 05-27-99

Average Soil Permeability Little Wicomico River

Little Wicomico River Sanitary Survey Deficiencies

4 Kilometers

Little Wicomico River Sanitary Survey Deficiencies

- a CONTRIBUTES ANIMAL POLLUTION, direct
- A CONTRIBUTES ANIMAL POLLUTION, indirect
- △ CONTRIBUTES POLLUTION (kitchen or laundry wastes), indirect
- CONTRIBUTES POLLUTION, direct
- CONTRIBUTES POLLUTION, indirect
- O NO FACILITIES, direct
- NO FACILITIES, indirect

Wicodef2

▲ CONTRIBUTES POLLUTION (kitchen or laundry wastes), indirect Wicodef2

→ yes

Wicodef2

Industrial Waste

Wicodef2

Boating Activity

Little Wicomico River Boundary

Survey Date: 10-30-00

Little Wicomico River Water Quality Monitoring Stations

Little Wicomico: 90th percentile and geomean for last 30 sampling events

Little Wicomico River Boundary

Average BST for the Little Wicomico River

Geometric Mean Load Calculation Results for the Little Wicomico River

CLOSURE ID AND STATION NUMBER	GEO -METRIC MEAN	SEGMENT VOLUME (CUBIC METERS)	VOLUME X GEO - MEAN	VOLUME X CRITERIA (14MPN/100M L)	(ALLOW- ABLE LOAD)- (EXISTING LOAD)	REQUIRED REDUCTION IN PERCENT
180 STATION 9X	7.6	175,387.31	1.34E+10	2.46E+10	1.12E+10	NA
180-A STATION 13.5Z	7.7	152,369.11	1.17E+10	2.13E+10	-9.59E+9	NA
180 – B STATION 19	26.3	395,208.17	1.04E+11	5.53E+10	.86E+10	87.8%
180 – B STATION 20	17.3	Using same volume as STA 19	6.85E+10	5.53E+10	1.32E+10	23.8%

Load Calculation Result 90th Percentile for the Little Wicomico River

CLOSURE ID AND STATION NUMBER	90 TH PERCENT. VALUE (MPN/100ML)	SEGMENT VOLUME (CUBIC METERS)	VOLUME X 90 TH PERCENT. VALUE = ACTUAL LOAD	VOLUME X 90 TH CRITERIA (49MPN/100ML) = LOAD ALLOCATION	(ALLOW-ABLE LOAD)- (EXISTING LOAD) = LOAD REDUCTION	REQUIRED LOAD REDUCTION IN PERCENT
180 STATION 9X	45	175,387.31	7.89E+10	8.59E+10	-7.02E+9	NA
180 -A STATION 13.5Z	58	152,369.11	8.84E+10	7.47E+10	1.37E+10	18.4%
180 – B STATION 19	64.9	395,208.17	2.56E+11	1.94E+11	6.28E+10	32.4%
180 – B STATION 20	76.8	Using same volume as STA 19	3.04E+11	1.94E+11	1.10E+11	56.7%

TMDL Little Wicomico River Stations 9x and 13.5z

AREA 180 STATION 9X	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	7.89E+10	8.59E+10	NA
Bird	16%	1.26E+10	1.26E+10	0%
Wildlife	10%	7.89E+09	7.89E+09	0%
Human	62%	4.89E+10	4.89E+10	0%
Pets	3%	2.37E+09	2.37E+09	0%
Livestock	9%	7.10E+09	7.10E+09	0%

AREA 180-A STATION 13.5Z	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	8.84E+10	7.47E+10	18%
Bird	23%	2.03E+10	2.03E+10	0%
Wildlife	9%	7.96E+09	7.96E+09	0%
Human	51%	4.51E+10	3.14E+10	30%
Pets	7%	6.19E+09	6.19E+09	0%
Livestock	10%	8.84E+09	8.84E+09	0%

TMDL Little Wicomico River Stations 19 and 20

AREA 180 – B	BST Result	Actual Load (cfu)*	Load Allocation	Reduction needed
STATION 19	% of total load	TOTAL STATE OF THE STATE OF	(cfu)*	Service Services and the Residence
Total	100%	2.56E+11	1.94E+11	32%
Bird	16%	4.10E+10	4.10E+10	0%
Wildlife	10%	2.56E+10	2.56E+10	0%
Human	62%	1.59E+11	9.95E+10	37%
Pets	3%	7.68E+09	7.68E+09	0%
Livestock	9%	2.05E+10	2.05E+10	0%

AREA 180 - B STATION 20	BST Result % of total load	Actual Load (cfu)*	Load Allocation (cfu)*	Reduction needed
Total	100%	3.04E+11	1.94E+11	57%
Bird	16%	4.86E+10	4.86E+10	0%
Wildlife	10%	3.04E+10	3.04E+10	0%
Human	62%	1.88E+11	8.20E+10	56%
Pets	3%	9.12E+09	9.12E+09	0%
Livestock	9%	2.43E+10	2.43E+10	0%

INITIAL CONCLUSIONS FOR TMDL

- * Major pollutant load appears to be of human origin
- * Data shows little or no seasonal effect
- * Wildlife and birds are not indicated as principal contributors to pollutant loading
- * Human loads are required to be reduced at the 100% level, therefore significant results may be expected through reductions in this contributor.

Staged Implementation

- TMDLs typically include staged reduction targets
 - allows most cost-effective measures to be implemented first
 - allows iterative evaluation of TMDL adequacy in achieving water quality standard

Next Steps

- TMDL Development
 - field work is complete
 - BST analysis is complete
 - draft TMDL (in progress)
- Implementation Plan
- Implementation
- Thoughts or Comments

Discussion Topics

- Comments on method
 - Source Identification
 - TMDL Calculation
- Suggestions for Public Process
 - Timing
 - Content
 - Notification (who, how)